If it's not what You are looking for type in the equation solver your own equation and let us solve it.
39.2t-4.9t^2=0
a = -4.9; b = 39.2; c = 0;
Δ = b2-4ac
Δ = 39.22-4·(-4.9)·0
Δ = 1536.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39.2)-\sqrt{1536.64}}{2*-4.9}=\frac{-39.2-\sqrt{1536.64}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39.2)+\sqrt{1536.64}}{2*-4.9}=\frac{-39.2+\sqrt{1536.64}}{-9.8} $
| 7p+(-3p+-4)=-2(2p+-1)+10 | | 0.5n+17,+n=20 | | 4.75t+4=13.5t+11 | | 8(w+1)=5w-13 | | y=6×4+1 | | 7p=(-3p+-4)=-2(2p+-1)+10 | | 7-7k-6=-7k-7k | | 36=(x-20)+(x) | | 15x-3=8x+11 | | 7-(x+3)+x-2=x+4 | | 5u-49=9(u-9) | | 36=(x-20)+x | | -3x+6=-2(-8+6x)1 | | x-624=2900 | | 7-(x+3)+x-2=4 | | 37-16=3(x-4) | | x•42=630 | | 10j+21=7j10 | | 4a+1=3a-1 | | 1/5p-2-1/3=4 | | 4(y+7)=9y-17 | | -2v-32=7(5v+6) | | x-320=745 | | 2(5x+2)—1=5 | | -3x(2)=+2x(3) | | 2|5x+2|—1=5 | | 14=28x | | y^2-19y=-84 | | x^2-6x=-58 | | 4(9x+7)=8(8x) | | 4(z+9)=12+2z | | 2q+431=883 |